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Abstract: Camellia japonica is a woody flower with high ornamental and economic value used for
landscaping and as a pot plant. Floral colors are among the most important ornamental traits of flower
plants, particularly multicolored flowers. The C. japonica cultivar ‘Joy Kendrick’ has multicolored
flowers; the corolla is pink with darker red stripes, but the molecular mechanism underlying this
trait is unknown. Here, pigment analysis showed that there are more anthocyanins accumulate in
red petal regions than in pink areas, which may be key to formation of red stripes. Furthermore,
transcriptome analysis revealed that anthocyanin biosynthesis, modification, and transporter genes
are highly expressed in red stripes, consistent with the observed anthocyanin accumulation. In
addition, many plant hormone signal transduction genes, particularly auxin, may contribute to the
regulation of red stripe formation. This study provides broad insights into pigment accumulation
and the regulatory mechanisms underlying floral color formation in C. japonica, and lays a foundation
for breeding new C. japonica varieties.
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1. Introduction

Flower color is among the most important traits of ornamental plants, and a consistent
focus of biological research. Anthocyanins are flavonoids that form the pigment basis of
flower color, and generate a wide variety of colors in plants, including red, pink, purple,
and blue [1]. Further, anthocyanins act as efficient sunscreens, protecting plants from
high-light stress, and behave as reactive oxygen species (ROS) scavengers that help to
neutralize the ROS formed under stress conditions [2,3]. Moreover, anthocyanins exert a
positive effect on human health [4,5], acting as potent antioxidants with beneficial effects
on cardiovascular disease, cancer, and other chronic diseases [6–8].

Anthocyanins are formed from a flavylium cation backbone, derived from the flavonoid
pathway, and hydroxylated in different positions [9]. Phenylalanine is the precursor for
anthocyanin formation, which forms cinnamic acid via phenylalanine ammonia lyase (PAL)
catalysis [10]. Subsequently, with the help of cinnamic acid 4-hydroxylase (C4H) and 4-
coumaroyl: Co A ligase (4CL), cinnamic acid is converted to malonyl-CoA. Then, chalcone
synthase (CHS) catalyzes the formation of tetrahydroxychalcone from one molecule of
coumaric acid and three molecules of malonyl-CoA. Tetrahydroxychalcone is the substrate
for chalcone isomerase (CHI), and CHI can cyclize tetrahydroxychalcone to generate narin-
genin, which is a key branch point for production of isoflavonoids, flavonols, flavanones,
and anthocyanins. During the synthesis of anthocyanins, naringenin is hydroxylated by
flavanone 3-hydroxylase (F3H) to generate dihydrokaempferol. Next, dihydrokaempferol
is converted to leucocyanidin for anthocyanin biosynthesis by dihydroflavonol 4-reductase
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(DFR) [11]. Finally, anthocyanidin synthase (ANS) catalyzes the formation of colored an-
thocyanidins [12,13], which are covalently modified by glycosylation, methylation, and
acylation, to form anthocyanins, which are more stable in structure and deeper in color.
In addition, anthocyanins are transported into vacuoles, and ATP-binding cassette (ABC),
multidrug and toxic compound extrusion transporter, and glutathione S-transferase (GST)
family proteins are important for this process [14,15].

The formation of floral pigment patterns is caused by differences in pigment in
epidermal cells, and impacts the behavior of pollinators and the ornamental value of
flowers [16–18]. Bumblebees have an instinctive preference for two-colored flowers over
single-colored flowers [19], and significantly favor radial over concentric patterns and
non-patterned discs [20]. Flower blotches are mainly caused by accumulation of antho-
cyanins. Red blotches in Oncidium are comprised of cyanidin and peonidin [21], while
cyanidin-based glycosides accumulation cause formation of cyanic blotches in the petals of
the tree peony [22].

Plant hormones are a class of small molecules that regulate a wide range of physiolog-
ical responses and developmental processes of plants [23], such as stress adaptation [24],
seed germination [25], and flowering [26], and are important regulators modulating an-
thocyanin accumulation. Abscisic acid (ABA) treatment induces the expression of genes
involved in anthocyanin biosynthesis in grapevine [27], while auxin tends to exert an
opposite effect [28]. Ethylene and jasmonic acid are combined via the MdERF1B-MdMYC2
module to control the production of anthocyanins in apple [29].

Transcription factors (TFs), and particularly MYB TFs, control the expression of struc-
tural genes involved in anthocyanin biosynthesis at the level of transcription. In sweet
cherry, PavMYB10.1 is involved in anthocyanin biosynthesis and participates in fruit skin
color formation [30]. Further, MYB6 promotes anthocyanin and proanthocyanidin biosyn-
thesis in Populus tomentosa [31], while CsMYB78 and CsMYB33 contribute to anthocyanin
biosynthesis activation in Cannabis sativa [32]. Numerous studies have shown that MYB TFs
interact with basic helix-loop-helix (bHLH) and WD-repeat proteins (WDR) TFs to form
the MBW (MYB–bHLH–WDR) complex, which orchestrates anthocyanin biosynthesis. The
MYB5–TT8–TTG1 complex contributes to control of DFR, leucoanthocyanidin dioxygenase
(LDOX), and transparent testa 12 expression, whereas TT2–EGL3/GL3–TTG1 complexes are
functional regulators involved in regulation of LDOX, banyuls (anthocyanidin reductase),
autoinhibited H+-ATPase isoform 10, and DFR transcription [33,34].

Camellia japonica is a well-known ornamental plant, popular for its colorful and mul-
tiform petals, which attracts considerable attention from horticultural researchers. Con-
trasting flower color patterns are often considered as signals that facilitate communication
between plants and pollinators [17,35], and this phenomenon has been studied exten-
sively [36,37]. The C. japonica cultivar, ‘Joy Kendrick’ has beautiful flowers with darker
red stripes on the petals; however, the molecular mechanism underlying this phenotype is
unclear, and the lack of knowledge has limited the breeding of new C. japonica cultivars
with more desirable flowering traits. In this study, we sampled red and pink regions from
‘Joy Kendrick’ petals separately and conducted transcriptome sequencing to elucidate the
mechanism underlying flower color formation.

2. Materials and Methods
2.1. Plant Materials and Sample Collection

‘Joy Kendrick’ petals were obtained from the Germplasm Resource Center of the
Institute of Subtropical Forestry, Chinese Academy of Forestry (Daqiao Road, Hangzhou
City, China). Petals from plants in full-flower were separated into two parts: pink (P) and
red (R). All samples were snap-frozen in liquid nitrogen and stored at −80 ◦C.

2.2. Determination of Anthocyanin Content

Anthocyanin content in fresh pink and red flower samples was determined using a
Plant Anthocyanin Content Detection Kit BC1385 (Solarbio, Beijing, China).
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2.3. Transcriptome Analysis

All samples were ground in liquid nitrogen, and a plant RNA extraction kit DP441
(TIANGEN, Beijing, China) was used to purify RNA. Three biological replicates were
included for each sample. RNA quality was examined using NanoDrop1000 (ThermoFisher,
Waltham, MA, USA) and Agilent 2100 (Agilent Technologies, Santa Clara, CA, USA)
instruments. Poly-T oligo-attached magnetic beads were used to purify mRNA from total
RNA, first strand cDNA synthesis was performed using random hexamer primers and
M-MuLV Reverse Transcriptase, and second strand synthesis using DNA Polymerase I and
dNTPs. Finally, RNA sequencing was performed on the Illumina NovaSeq 6000 platform
(Illumina, San Diego, CA, USA).

2.4. De Novo Assembly and Functional Annotation of Unigenes

Clean data were obtained by eliminating adapter reads and low-quality reads from
raw data. Then Q20, Q30, and GC values were calculated to assess the clean data. Trinity
software (v2.6.6) was used for de novo assembly of clean reads, with min-kmer-cov set
to 2 and default parameters for other options. Gene function annotation was performed
based on the following databases: NCBI non-redundant protein sequences (Nr), NCBI
non-redundant nucleotide sequences (Nt), Protein family (Pfam), Clusters of Orthologous
Groups of proteins (KOG/COG), Swiss-Prot (a manually annotated and reviewed pro-
tein sequence database), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene
Ontology (GO). Plant TFs were predicted using iTAK software and the Plant Transcrip-
tion Factor Database (http://planttfdb.gao-lab.org/index.php, accessed on 27 October
2022). Coding sequence prediction was performed using Nr, Swiss-Prot, and TransDecoder
(3.0.1). Transcript abundance was evaluated using RSEM and is presented as Fragments
Per Kilobase of transcript per Million mapped reads (FPKM) values. Pearson correla-
tions between biological replicates were calculated using the OMICSHARE cloud platform
(https://www.omicshare.com/, accessed on 24 October 2022) based on FPKM values.

2.5. Differential Expression Analysis

Analysis of differential expression between two samples was assessed based on FPKM us-
ing the DESeq2 R package (1.20.0) with threshold values of p < 0.05 and |log2(fold change)| ≥ 0.
GOseq and KOBAS were used to perform GO and KEGG enrichment analysis of differ-
entially expressed genes (DEGs). Gene set enrichment analysis (GSEA) was performed
using GSEA software (v3.0), with gene sets defined according to KEGG pathways. Detailed
information on gene sets is provided in Table S1. Heatmap was constructed using the
TBtools software (v1.106), [38]. A protein-protein interaction (PPI) network was constructed
using the String database (https://cn.string-db.org/, accessed on 15 December 2022), and
networks were visualized using Cytoscape 3.9.1 with the CytoHubba plugin.

2.6. Quantitative Real-Time PCR (qRT-PCR)

To verify the reliability and accuracy of transcriptome data, DEGs associated with the
flavonoid pathway and plant hormone signal transduction were randomly selected for qRT-
PCR analysis. The RNA samples were reverse transcribed to cDNA using a PrimeScript
RT Mater Mix (Takara, Dalian, China). Gene-specific primers were designed using the
Primer3Plus website (Table S2) and qRT-PCR was performed using the ABI 7500 Fast Real-
Time PCR System (ABI, Oyster Bay, NY, USA) with TB Green® Premix Ex Taq II (Takara,
Dalian, China). Relative gene expression was quantified using the 2−∆∆Ct method.

2.7. Statistical Analysis

Statistical analyses were conducted using GraphPad Prism 9 (Graphpad, San Diego,
CA, USA). Results are presented as mean ± SE of three independent experiments. Statistical
significance was determined using the Student’s t-test (* p < 0.05 and ** p < 0.01, respectively).

http://planttfdb.gao-lab.org/index.php
https://www.omicshare.com/
https://cn.string-db.org/


Forests 2023, 14, 69 4 of 13

3. Results
3.1. Phenotypic Characteristics and Anthocyanin Analysis of ‘Joy Kendrick’

‘Joy Kendrick’ petals comprise two regions; the majority is pink and there are randomly
distributed red stripes (Figure 1A). The main pigment component of C. japonica petals is
anthocyanins [39,40]. To explore pigment differences in ‘Joy Kendrick’ multicolor petals,
anthocyanin content was analyzed. Compared with levels in pink samples (0.034 µmol/g),
anthocyanin content was significantly enhanced in red samples (0.28 µmol/g), represent-
ing approximately 8-fold higher anthocyanin content in red areas, and suggesting that
anthocyanin accumulation is responsible for red stripe formation.

Forests 2023, 14, x FOR PEER REVIEW 4 of 14 
 

 

2.7. Statistical Analysis 

Statistical analyses were conducted using GraphPad Prism 9 (Graphpad, San Diego, 

CA, USA). Results are presented as mean ± SE of three independent experiments. Statisti-

cal significance was determined using the Student’s t-test (* p < 0.05 and ** p < 0.01, respec-

tively). 

3. Results 

3.1. Phenotypic Characteristics and Anthocyanin Analysis of ‘Joy Kendrick’ 

‘Joy Kendrick’ petals comprise two regions; the majority is pink and there are ran-

domly distributed red stripes (Figure 1A). The main pigment component of C. japonica 

petals is anthocyanins [39,40]. To explore pigment differences in ‘Joy Kendrick’ multicolor 

petals, anthocyanin content was analyzed. Compared with levels in pink samples (0.034 

µmol/g), anthocyanin content was significantly enhanced in red samples (0.28 µmol/g), 

representing approximately 8-fold higher anthocyanin content in red areas, and suggest-

ing that anthocyanin accumulation is responsible for red stripe formation. 

 

Figure 1. ‘Joy Kendrick’ petal phenotypes and pigmentation. (A) ‘Joy Kendrick’ petal in full-flower. 

R, red fractions; P, pink fractions. Bars = 1 cm. (B) Anthocyanin content of red (R) and pink (P) 

samples, and expressed in micromolar per gram fresh weight. Statistical significance was deter-

mined using Student’s t-test (** p < 0.01). 

3.2. Transcriptome Data Overview 

To investigate the molecular mechanisms underlying formation of multicolored 

flowers in ‘Joy Kendrick’, two samples (P and R) with three replicates each were used for 

RNA sequencing, the RIN values ranged from 9.2 to 9.8 indicating high quality of RNA 

samples (Table S3). The raw RNA-seq data have been uploaded to the National Center for 

Biotechnology Information (PRJNA913600). After removing the low-quality and adaptor 

sequences, 39.5 Gb clean reads were obtained. The average Q30 ratio was 89.32%, and 

average GC content was 44.42% (Table S4). After sequence assembly, gene expression lev-

els were obtained by align the sequences to the reference transcript sequences. And pear-

son correlation coefficient values were calculated to assess the repeatability of data among 

the three biological replicates per sample, and were in the range 0.986–0.998, indicating 

high data reproducibility (Figure 2A). 

Figure 1. ‘Joy Kendrick’ petal phenotypes and pigmentation. (A) ‘Joy Kendrick’ petal in full-flower.
R, red fractions; P, pink fractions. Bars = 1 cm. (B) Anthocyanin content of red (R) and pink (P)
samples, and expressed in micromolar per gram fresh weight. Statistical significance was determined
using Student’s t-test (** p < 0.01).

3.2. Transcriptome Data Overview

To investigate the molecular mechanisms underlying formation of multicolored flow-
ers in ‘Joy Kendrick’, two samples (P and R) with three replicates each were used for
RNA sequencing, the RIN values ranged from 9.2 to 9.8 indicating high quality of RNA
samples (Table S3). The raw RNA-seq data have been uploaded to the National Center for
Biotechnology Information (PRJNA913600). After removing the low-quality and adaptor
sequences, 39.5 Gb clean reads were obtained. The average Q30 ratio was 89.32%, and
average GC content was 44.42% (Table S4). After sequence assembly, gene expression levels
were obtained by align the sequences to the reference transcript sequences. And pearson
correlation coefficient values were calculated to assess the repeatability of data among the
three biological replicates per sample, and were in the range 0.986–0.998, indicating high
data reproducibility (Figure 2A).

3.3. Identification and Enrichment of DEGs

To better understand the differences between the R and P groups, DEGs were selected
using screening parameters of |log2(foldchange)| ≥ 0 and p < 0.05. A total of 3641 DEGs
were obtained; 2002 DEGs were upregulated and 1639 were downregulated in red petal
areas (Figure 2B). To provide functional insights, we conducted a detailed investigation
of DEGs by GO and KEGG enrichment analyses. GO enrichment analysis showed that
upregulated DEGs were mainly enriched in the “oxidoreductase activity”, “ribosome”, and
“structural constituent of ribosome”, while downregulated DEGs were predominantly en-
riched in “cell wall”, “external encapsulating structure”, and “transmembrane transporter
activity” (Figure 2C). KEGG enrichment analysis indicated that secondary metabolites may
undergo significant changes. Notably, up-regulated DEGs were significantly enriched in
“flavonoid biosynthesis”, and “phenylpropanoid biosynthesis” (Figure 2D), which are high
associated with anthocyanin biosynthesis.
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Figure 2. Differential expression analysis and enrichment analysis. (A) Results of Pearson correlation
analysis among transcriptome samples. Red, relatively high correlation level; green, relatively low
correlation level. (B) Volcano plot of differential gene expression analysis. Red, up-regulated genes in
samples from red petal areas; green, down-regulated genes in samples from red petal areas. (C) GO
enrichment analysis of DEGs. (D) KEGG enrichment analysis of DEGs. (E) Gene set enrichment
analysis (GSEA) of phenylpropanoid biosynthesis pathway. (F) GSEA of flavonoid biosynthesis
pathway. ES, enrichment score; NES, normalized enrichment score; FDR, false discovery rate.
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3.4. Gene Set Enrichment Analysis

To fully understand the expression patterns of specific genes associated with flavonoid
synthesis, we next conducted GSEA (Figure 2E,F). Normalized enrichment scores for
the phenylpropanoid biosynthesis and flavonoid biosynthesis gene sets were 1.68 and
1.44, respectively. False discovery rate values for all gene sets were <0.25. These results
demonstrate that genes involved in flavonoid and phenylpropanoid biosynthesis meet
globally upregulated in red petal regions.

3.5. Identification of Candidate Genes Involved in Anthocyanin Biosynthesis

Functional enrichment analysis of DEGs identified numerous genes involved in antho-
cyanin biosynthesis. Consistent with their known roles in variation of flower pigmentation,
PAL, C4H, CHS, CHI, and DFR were highly expressed in red petal regions, relative to
samples from pink areas (Figure 3). Further, two genes encoding anthocyanidin 3-O-
glucosyltransferases (3GTs) and two encoding O-methyltransferases (OMTs), which are
responsible for anthocyanin glycosylation and methylation, respectively, were upregulated
in red petal regions (Figure 3). Moreover, two ATB binding cassette C family (ABCC) genes,
which encode anthocyanin transporters, were highly expressed in red, relative to pink,
petal regions (Figure 3). GSTs serve as ligands in the transport of glutathione-conjugated an-
thocyanins to the tonoplast, and eight GST genes exhibited a trend toward being expressed
at higher levels in red, relative to pink petal regions (Figure 3).
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Figure 3. Schematic of anthocyanin biosynthesis pathways. Red, up-regulated; blue, down-regulated.
PAL, phenylalanine ammonia lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumaroyl: Co A
ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; DFR, dihy-
droflavonol 4-reductase; ANS, anthocyanidin synthase; 3GT, anthocyanidin 3-O-glucosyltransferase;
OMT, O-methyltransferase; ABC-C, ATB binding cassette C family; GST, glutathione S-transferase.
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3.6. Plant Hormone Signal Transduction

Plant development and growth depend heavily on phytohormones, and numerous
DEGs associated with plant hormone signal transduction were identified, especially genes
engaged in auxin signaling: 1TAR, 1YUCCA,1 PIN3, 3 ARF, 2 GH3, 7 IAA, 4 SAUR, and
1 TIR1 (Figure 4A). Interestingly, the majority of these genes were downregulated in red
petal region samples; for example, two Indole-3-acetic acid (IAA) genes were upregulated
in red regions, whereas five IAA genes showed a trend toward downregulation. Expression
levels of TIR1, a gene encoding an auxin receptor, were decreased in red samples. Further,
SAUR genes, which encode auxin-inducible factors, all exhibited a trend toward downreg-
ulation in red region samples, and similar results were detected for auxin response factor
(ARF) genes. These results indicate that auxin signaling was inhibited in red petal regions.
No patterns in changes of DEG levels were observed in the brassinosteroid or cytokinin sig-
naling pathways (Figure S1). Moreover, ERF1 and EIN3 in the ethylene signaling pathway,
NPR salicylic acid receptors, and GAI1 in the gibberellin pathway showed an increasing
trend (Figure S1).
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Figure 4. Differentially expressed genes (DEGs) involved in auxin signal transduction and dif-
ferentially expressed transcription factors (TFs). (A) Heatmap of DEGs involved in auxin signal
transduction. Red, up-regulated; blue, down-regulated. TAR, tryptophan aminotransferase-related
protein; PIN3, PIN-FORMED3 (PIN3)-mediated auxin transport; TIR1, transport inhibitor response 1;
SAUR, small auxin-up RNA; GH3, Gretchen Hagen 3; IAA, indole-3-acetic acid; ARF, auxin response
factor. (B) Differentially expressed TFs in red and pink petal region samples. Red columns, up-
regulated TFs; blue columns, down-regulated TFs. (C) Heatmap of differentially expressed MYB and
bHLH TFs; each row was independently normalized according to FPKM value. Blue, low expression;
red, high expression. (D) Protein-protein interaction network of genes involved in the MYB, bHLH,
and flavonoid pathways; deeper color node indicates higher degree score.

3.7. Identification of Transcription Factors Regulating Color Formation in ‘Joy Kendrick’

TFs have key roles in regulation of anthocyanin biosynthesis. To obtain insight into the
mechanisms regulating flower pigment formation, we identified differentially expressed
TFs. Among differentially expressed TFs, the HB and MYB families were most highly
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represented, with 24 members identified (Figure 4B). Consistent with plant hormone signal
transduction, genes related to AUX/IAA and the AP2/ERF TF family showed substantial
differences in expression levels. The MYB and bHLH TFs have crucial roles in control
of anthocyanin biosynthesis; therefore, we performed a focused analysis on these TFs.
Compared with pink samples, 9 MYBs and 6 bHLHs were upregulated, whereas 15 MYBs
and 5 bHLHs were downregulated in red region samples (Figure 4C). A PPI network of
TFs and proteins involved in flavonoid synthesis was generated (Figure 4D), indicated that
8 MYB and 6 bHLH TFs may participate in regulation of anthocyanin biosynthesis-related
structural genes, within a complex regulatory network.

3.8. Validation of Candidate Genes by Quantitative Real-Time PCR

To further validate the above results, 12 genes related to flavonoid pathway and
plant hormone signal transduction were selected for qRT-PCR analysis. To confirm primer
specificity, the qPCR product was analysed by agarose gel electrophoresis, only single
bands observed, indicating good specificity for the primers (Figure S2). Strong concordance
between the transcriptome data and qRT-PCR results was observed (Figure 5), indicating
the reliability of the transcriptome analysis results.
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4. Discussion

The most significant characteristic of ornamental plants is their flower color. C. japonica
is celebrated as an ornamental flower on account of its colorful flowers and abundant flower
types. ‘Joy Kendrick’ is a C. japonica cultivar with beautiful red stripes on the petal, but the
molecular mechanisms underlying its pigmentation are not well understood. Anthocyanins,
carotenoids, and chlorophyll are the major pigments of flowers [41,42]. Anthocyanins
provide a wide range of colors, ranging from orange/red to violet/blue, while carotenoids
play a significant role in the yellow to red coloration of flowers. Numerous studies have
shown that anthocyanins are the main flower pigments in C. japonica [39,40]. In this
study, the anthocyanin content of samples was measured and analyzed, and found to
be significantly enhanced in the red striped areas of petals. This result suggests that
anthocyanins have essential functions in the color formation of petal stripes. In the tree
peony, petal anthocyanin distribution is responsible for blotch formation [17]. Further, in
pansy, cyanidin and delphinidin were detected in cyanic blotches [16], while malvidin-
3-O-galactoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-
glucoside are involved in red coloration of floral tissues in Oncidium [43].
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Changes in transcripts levels of genes related to anthocyanin biosynthesis is the lead-
ing cause of alterations in anthocyanin content. In the petals of ‘Joy Kendrick’ flowers,
PAL, C4H, 4CL, CHS, CHI, and DFR transcript levels were elevated in the red areas, more
anthocyanidins are produced as a result of upregulation of these genes. Transcriptome
analysis of tree peony revealed that PsCHS, PsF3H, PsDFR, and PsANS were expressed
at substantially higher levels in purple spots than in white non-spot areas [37]. Higher
levels of VwF3′5′H, VwDFR, and VwANS transcription were detected in the cyanic blotches
of pansy [16]. To produce stable anthocyanins, the generated anthocyanidins must un-
dergo a series of methylation, glycosylation, and acylation processes. In this study, two
3GTs and two OMTs showed higher expression in red petal areas than in pink samples.
Thus, the intensity of anthocyanin colors in red samples may be increased via glycosy-
lation and methylation. Heterologous expression of St3GT in tobacco plant can greatly
elevate anthocyanin content [44], while in Freesia hybrida, Fh3GT1 expression is related
to the accumulation of anthocyanins and flavonols [45]. Methylation is crucial for antho-
cyanin accumulation in plants, and may impact anthocyanin water solubility and stability.
PpAOMT2 can contribute to O-methylation of peach anthocyanins at the 3′ position [46].
Anthocyanins are transported into vacuoles after synthesis in the cytosol, where they are
stored and carry out their significant functions, such as floral pigmentation. GST-mediated
transport, membrane transporter-mediated transport, and vesicle trafficking are the three
mechanisms suggested to be involved in anthocyanin transport [15,47]. A GST mutant
in maize leads to cyanidin-3-glucoside accumulation in the cytoplasm, giving tissues a
bronze hue [48]. In Arabidopsis, transparent testa 19 was identified as a glutathione S-
transferase that functions as a carrier to transport cyanidin to the tonoplast [49]. Similar
results were also reported in petunia [50], carnation [51], and strawberry [52]. In our study,
nine GSTs were identified as DEGs and almost all GSTs tended to exhibit higher expression
levels in samples from red petal areas. These genes likely have important functions in
anthocyanin transport and warrant intensive study. ABCC transporters are thought to
contribute to anthocyanin accumulation through transport of flavonoids conjugated with
glutathione [14]. In Arabidopsis, cyanidin-3-O-glucoside is transported by AtABCC2, de-
pending on co-transport of glutathione (GSH) [53]. Similarly, in grape, ABCC1 transports
malvidin 3-O-glucoside in the presence of GSH [54]. Two ABCC genes in ‘Joy Kendrick’
are proposed to be involved in anthocyanin transport. Overall, the cooperative activities
of genes related to the synthesis, modification, and transport of anthocyanins are likely
responsible for red stripe formation.

A number of phytohormones are also involved in anthocyanin production. There is a
significant positive correlation between ABA levels and anthocyanin content in Lycium fruit,
and exogenous application of ABA increased anthocyanin content [55]. MdbZIP44, an apple
transcription factor activated by ABA, can interact with MdMYB1 to encourage anthocyanin
accumulation [56]. In this study, we found that protein phosphatase 2C (a negative regulator
of the ABA signaling pathway) was expressed at low levels in red samples, while two
ABA receptors (pyrobactin resistance-like) showed high expression levels (Figure S1).
These results indicate that ABA may positively influence anthocyanin biosynthesis in red
petal stripes. Moreover, auxin-associated DEGs showed a global downward trend in red
samples, and were negatively correlated with anthocyanin content in the two samples.
Auxin is known to inhibit anthocyanin production [55], 2,4-dichlorophenoxyacetic acid
and 1-naphthaleneacetic acid suppressed anthocyanin biosynthesis in red-fleshed apple
callus [57]. A study on red raspberry reached the same conclusion [58]; IAA-treated
fruit had less anthocyanin content than the control group. ARF genes play important
roles in auxin-mediated signaling [59] and negatively regulate anthocyanin by directly
suppressing anthocyanin biosynthesis genes. In apple, MdARF13 suppresses MdDFR
expression, thereby decreasing anthocyanin accumulation [60], while MdARF2 functions
as a transcriptional repressor of anthocyanin biosynthesis [61]. Further, MdARF19 inhibits
anthocyanin accumulation in the callus via strengthening MdLOB52 activation [62]. In
our study, 3 ARF genes were downregulated in red samples (Figure 4A). Additionally,
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genes involved in ethylene and salicylic acid signaling were upregulated in red samples
(Figure S1), consistent with previous reports that ethylene and salicylic acid treatment can
increase plant anthocyanin levels [63,64]. Various plant hormones interact to constitute a
complex anthocyanin regulation network, and crosstalk among ABA, IAA, and gibberellin
is known to regulate anthocyanin biosynthesis in sweet cherry [65]. Exogenous ABA
increased the contents of auxin and cytokinins in grape, with consequent impact on fruit
quality [66]. Based on our findings, we propose that abscisic acid, auxin, ethylene, and
salicylic acid coordinately regulate anthocyanin biosynthesis in ‘Joy Kendrick’, and more
in-depth research is warranted.

5. Conclusions

In this study, we performed transcriptome and pigment analyses to study the molec-
ular mechanisms of flower color formation in C. japonica cultivar ‘Joy Kendrick’. ‘Joy
Kendrick’ has multicolored flowers, and there are more anthocyanins accumulate in red
petal regions than in pink areas. Our results suggested that the cooperative activities
of genes related to the synthesis, modification, and transport of anthocyanins are likely
responsible for red stripe formation. Importantly, auxin-associated DEGs showed a global
downward trend in red samples, indicating that auxin perhaps negatively regulate the
anthocyanin accumulation in ‘Joy Kendrick’. This study could lay a theoretical foundation
for breeding new C. japonica varieties.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14010069/s1, Table S1: Gene sets for gene set enrichment analysis;
Table S2: Sequences of primers used for qRT-PCR; Table S3: RNA integrity number (RIN) value of
RNA samples; Table S4: Summary of RNA-seq data from pink sample (P) and red sample (R); Figure
S1: DEGs involved in plant hormone transduction; Figure S2: Agarose gel electrophoresis image of
qRT-PCR product.
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